\qquad
\qquad

Math 8 Problem Set \#14

1. What is the solution to the equation shown below?

$$
\frac{2}{3} x+5=1
$$

a. $x=-6$
b. $x=4$
c. $x=-4.5$
d. $x=9$
2. Which equation has a solution of $x=5$?
a. $120 \mathrm{x}-17=583$
b. $100 \mathrm{x}+50=5050$
c. $12 x+26=80$
d. $4 \mathrm{x}-10=30$
3. Simplify the expression
$2(3 x-5)+4(-6 x+1)$
a. $-18 \mathrm{x}-6$
b. $-18 \mathrm{x}-14$
c. $16 x+14$
d. $16 \mathrm{x}-6$
4. The quotient of $\left(9.2 \times 10^{6}\right)$ and $\left(2.3 \times 10^{2}\right)$ expressed in scientific notation is

1. 4,000
2. 40,000
3. 4×10^{3}
4. 4×10^{4}
5.

Triangle ABC was dilated to form Triangle A'B'C'.

What was the scale factor used?
a. 2
b. 4
c. -2
d. -4
6. Simplify:
$y \times y^{12}$
a. y^{12}
b. y^{13}
c. $2 \mathrm{y}^{12}$
d. $2 \mathrm{y}^{13}$
7. What is the length of the diagonal in the rectangle below?

65 ft .

a. 137 ft
b. 31 ft
c. 97 ft
d. 98 ft
8. Simplify:
$-5.5-10+(-3.8)+101 / 2$
a. -1.2
b. -8.8
c. 8.8
d. 1.2
9. \qquad The name of the side of the triangle opposite the right angle is called: A) the leg B) the right side C) Pythagorus D) hypotenuse
a. the leg
b. the right side
c. Pythagorus
d. hypotenuse
10. Solve:
$7 x-3=5 x+5$
a. $\mathrm{x}=3$
b. $x=4$
c. $x=1$
d. $x=0.5$
11. Solve:
$m-1 \frac{1}{2}=-\frac{5}{4}$
a. $-\frac{1}{4}$
b. $\frac{1}{4}$
c. $\frac{3}{4}$
d. $-\frac{3}{4}$
12. Solve: $\frac{3}{5} c+4=13$
a. 15
b. 7
c. 9
d. -15
13. Solve:
$-21-8 a=-1+6(4-5 a)$
a. 2
b. -2
c. 0.5
d. -0.5
14. Which equations with exponential expressions are true? Select all that apply.
a. $3^{3}=3 \cdot 3$
b. $5^{2}=5 \cdot 5$
c. $5^{4}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$
d. $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=6^{7}$
e. $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{6}$
f. $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{7}$
15. If $\triangle A B C$ is rotated 90° clockwise about the origin, what will be the new coordinates of vertex B ?

a. $(-1,-4)$
b. $(1,4)$
c. $(4,1)$
d. $(4,-1)$
16. Rectangle FGHJ shown below, is translated 6 units right and 1 unit up to produce rectangular $F^{\prime} G^{\prime} H^{\prime} J^{\prime}$.

Which statement about the side lengths of rectangle $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{J}^{\prime}$ is true?
a. $\mathrm{F}^{\prime} \mathrm{G}^{\prime}=3$ and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}=5$
b. $\mathrm{F}^{\prime} \mathrm{G}^{\prime}=3$ and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}=6$
c. $\mathrm{F}^{\prime \prime} \mathrm{G}^{\prime}=9$ and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}=5$
d. $\mathrm{F}^{\prime} \mathrm{G}^{\prime}=9$ and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}=6$
17. A reflection changes the \qquad of a figure.
a. side lengths
b. angle measurements
c. size
d. location
18. The lengths of the sides of a right triangle can be

1. $9,12,15$
2. $8,10,13$
3. $5,5,10$
4. $4,5,6$
5. How is 0.00001578 written in scientific notation?
a. $1.578 \cdot 10^{-5}$
b. $1.578 \cdot 10^{-6}$
c. $15.78 \cdot 10^{-5}$
d. $15.78 \cdot 10^{5}$
6. Solve:
$-\frac{1}{3} x+\frac{3}{4} x=10$
a. $\frac{10}{13}$
b. 2
c. 24
d. -24
7. What is the product of 8.4×10^{8} and 4.2×10^{3} written in scientific notation?
8. 2.0×10^{5}
9. 12.6×10^{11}
10. 35.28×10^{11}
11. 3.528×10^{12}
